Poly Bag and Iterator
Contents
Overview	2
Enums, Types, Collations	3
tBagTypes	3
tBag	3
tBagEach	3
Collations	3
Public Routines	5
Bag_Add	5
Bag_Alloc	6
Bag_Clear	7
Bag_Count	8
Bag_Free	9
Bag_IndexOf	10
Bag_Init	11
Bag_Item	12
Bag_MaxEntry	13
Bag_Release	14
Bag_Remove	15
Bag_RemoveAt	16
Internal Routines	17
BagGetNextCollectionSize	17
Bag_Expand	18
Bag_HashCode	19
Bag Iterator	20
BagEach_Reset	20
BagEach_Next	21
BagEach_Index	22
BagEach_Item	23
Examples	24
Associative Array	24
Memory Handles	25
Dynamic Strings	27
Record Access	29

[bookmark: _GoBack]

[bookmark: _Toc414103653]Overview
In a nutshell a bag is a container that you stuff things into. You can then check if a thing is in the bag, iterate over the items in the bag, or use the index of the bag values to access other entries by index, such as items in an array or records on disk. For string data types you can specify whether the comparison of items will be case sensitive or case insensitive. bag.inc is a PowerBASIC source file that may be included in your projects to provide the ability to store most PowerBASIC variable types (#Include Once "bag.inc"). Copies of values are stored in the bag. For example if you add a string to a bag, it is a copy of the string value that is stored in the bag. This allows you to safely add values to a bag in any scope and still ensure your application will function normally. The bag is implemented using a hashtable and is suitable for implementing associative arrays, database indexing, caches, and sets.
Because the bag is designed to hold most PowerBASIC variable types, you must pass items to the bag ByRef. A notable exception is the Bag_Item which returns a reference to the stored value. For this you would normally pass a pointer variable of the appropriate type. The reference remains valid for the same duration as the bag and value ie. until the value reference is removed, the bag is released, the bag is cleared, or the bag is freed.
Before a bag can be used, you must initialize it. This is done by Bag_Alloc for allocated bags, or Bag_Init for DIM’ed bags. Once initialized you must call either Bag_Free to release an bag that was allocated, or Bag_Release to release a bag that as DIM’ed. You can call Bag_Release on allocated bags, but you can’t call Bag_Free on DIM’ed bags.

[bookmark: _Toc414103654]Enums, Types, Collations
[bookmark: _Toc414103655]tBagTypes: eString, eWString, eStringZ, eWStringZ, eLong, eDWord, eWord, eQuad, eInteger, eByte, eExtended, eDouble, eSingle, eCurrency, eCurrencyX, eType
List of types a tBag can contain. These are set either when calling Bag_Init or Bag_Alloc.

[bookmark: _Toc414103656]tBag
The base bag type that is DIM’ed. The members of a tBag are:
table_ As Long Ptr ' Array of Pointers to entries_
maxTable_ As Long ' total # of slots in table_
modTable_ As Long ' value to AND to get table index

entries_ As tBagEntry Ptr ' Array of bagEntries
entryCount_ As Long ' # of items in entries_
maxEntries_ As Long ' total # of slots in entries_

freeCount_ As Long ' # of removed items (count = high
free_ As Long ' first free entries_ offset (+1)

collation_ As Byte Ptr ' Pointer to binary collation table (String, WString, StringZ, WStringZ)
type_ As Long ' See BagTypes
size_ As Long ' Size of WStringZ, StringZ, Type
dwords_ As Long ' Size of type in dwords
eSize_ As Long ' Total size of each entry

Example1
Dim bag As tBag
Bag_Init b, %tBagTypes.eString, CodePtr(caseSensitiveAscii), 0, %COUNT

Example2
Dim bag As tBag Ptr
Bag_Alloc a, %tBagTypes.eString, CodePtr(caseSensitiveAscii), 0, %COUNT

[bookmark: _Toc414103657]tBagEach
A tBag iterator structure. This is defined in a separate include bagEach.inc. The members are:
obj_ As tBag Ptr : a pointer to a tBag to iterate over
index_ As Long : the current item
[bookmark: _Toc414103658]Collations
caseInsensitiveAscii, caseSensitiveAscii
Binary comparison collations for string types. CodePtr’s of these are passed to either Bag_Alloc or Bag_Init. You can create addition collations by defining the 256 comparison bytes using AsmData / End AsmData. These are used for comparing eString, eWString, eStringZ, and eWStringZ string data types.
Local b As tBag
Local a As tBag Ptr
Bag_Init b, %tBagTypes.eString, CodePtr(caseSensitiveAscii), 0, %COUNT
Bag_Alloc a, %tBagTypes.eWString, CodePtr(caseInsensitiveAscii), 0, %COUNT

[bookmark: _Toc414103659]Public Routines
[bookmark: _Toc414103660]Bag_Add
Function: Adds a new copy of a value to the bag if it doesn’t already exist.
Returns
Long: Returns the index of the existing or added item.
Parameters
ByRef obj As tBag: The tBag variable to add a new value to.
ByVal value As Dword: Pass a ByRef variable to add. The type of the variable must exactly match the bagType value used to initialize the bag. No implicit conversions will be done.
Example
Dim bag As tBag
Dim value As Quad
Bag_Init bag, %tBagTypes.eQuad
value = 1: Bag_Add bag, ByRef value
value = 2: Bag_Add bag, ByRef value

[bookmark: _Toc414103661]Bag_Alloc
Subroutine: Allocates memory for a tBag using the provided parameters. When the bag is no longer needed you must call Bag_Free to release the allocated memory. Allocated bags persist until Bag_Free is called and may safely be passed up the scope tree. Allocated tBag Ptr variables are typically passed using @bag.
Parameters
ByRef obj As Dword(output): Pass a DWord sized variable that will point to the allocated tBag object. In the following example the bag variable will point to a tBag that was allocated:
Dim bag As tBag Ptr
Bag_Alloc bag, %tBagTypes.eQuad
ByRef bagType As Long: One of the tBagTypes. Determines the type of data that will be stored in the bag.
Optional ByVal collation As Dword: Used for String, WString, StringZ, and WStringZ to determine the binary collation used for comparing strings. Ex: CodePtr(caseSensitiveAscii)
Optional ByVal memberSize As Long: Determines the max size of StringZ, WStringZ, and Types. For types use sizeof(typeName) where typeName is the name of a type you have defined.
Optional ByVal requestedCapacity As Long : Creates a bag with requestedCapacity slots. It will be able to hold at least .75 x requested capacity items. For example if you pass 100, the bag is guaranteed to have at least 100 slots and be able to hold at least 75 items without expanding. A tBag will automatically expand as needed, but it is slightly more efficient to pre-allocate space if you know it.
Example
Local a As tBag Ptr
Bag_Alloc a, %tBagTypes.eWString, CodePtr(caseInsensitiveAscii), 0, %COUNT

[bookmark: _Toc414103662]Bag_Clear
Subroutine: Removes all items from a tBag. The items are freed by adding them to the internal free list. Free items will be reused as new items are added. If you want an empty tBag call Bag_Release instead. Bag_Clear is faster than Bag_Release.
Parameters
ByRef obj As tBag : The tBag variable to remove all items from.
Example
Local bag As tBag
Local value As Byte
Local bp As Byte Ptr
Bag_Init bag, %tBagTypes.eByte
value = 1: Bag_Add bag, ByRef value
value = 2: Bag_Add bag, ByRef value
value = 3: Bag_Add bag, ByRef value
Bag_Clear bag

[bookmark: _Toc414103663]Bag_Count
Function: Returns the # of active items in a tBag.
Returns
Long: Returns the # of active items in a tBag.
Parameters
ByRef obj As tBag : The tBag variable to get the count from.
Example
Local bag As tBag
Local value As Byte
Local bp As Byte Ptr
Bag_Init bag, %tBagTypes.eByte
value = 1: Bag_Add bag, ByRef value
value = 2: Bag_Add bag, ByRef value
value = 3: Bag_Add bag, ByRef value
Bag_RemoveAt bag, 0
? Format$(Bag_Count(bag)) ' display 2

[bookmark: _Toc414103664]Bag_Free
Subroutine: Free all memory for a tBag variable that was allocated with Bag_Alloc. Releases the tBag itself as well. i.e. after calling Bag_Free the tBag will no longer be valid. Attempting to use it will result in general protection faults. Failing to free an allocated bag when it is no longer needed will result in a memory leak.
Parameters
ByRef obj As Dword : The variable that was previously allocated using Bag_Alloc.
Example
Dim bag As tBag Ptr
Dim value As Quad
Bag_Alloc bag, %tBagTypes.eQuad
value = 1: Bag_Add @bag, ByRef value
Bag_Free bag

[bookmark: _Toc414103665]Bag_IndexOf
Function: Finds the index of a value in the bag. The returned index values are stable and may be used as array indexes or to retrieve records.
Returns
Long: Returns the zero based index of value passed in. If the value is not found -1 is returned.
Parameters
ByRef obj As tBag: The tBag variable to search
ByVal value As Dword: A ByRef variable to find the index of the value. The type of the variable must exactly match the bagType value used to initialize the bag. No implicit conversions will be done.
Example
Dim bag As tBag
Dim value As Quad
Dim j As Long
Bag_Init bag, %tBagTypes.eQuad
value = 1: Bag_Add bag, ByRef value
value = 2: Bag_Add bag, ByRef value
value = 3: Bag_Add bag, ByRef value
value = 2
j = Bag_IndexOf(bag, ByRef value) ' Returns 1

[bookmark: _Toc414103666]Bag_Init
Subroutine: Initializes a bag variable using the provided parameters. Typically called on a bag that was DIM’ed with Dim, Local, Static, Global, or Threaded.
Dim bag As tBag
Bag_Init b, %tBagTypes.eCurrency

Parameters
ByRef obj As tBag: Pass a tBag variable to initialize. In the following example the bag variable will point to a tBag that was allocated:
Dim bag As tBag
Bag_Init bag, %tBagTypes.eQuad
ByRef bagType As Long: One of the tBagTypes. Determines the type of data that will be stored in the bag.
Optional ByVal collation As Dword: Used for String, WString, StringZ, and WStringZ to determine the binary collation used for comparing strings. Ex: CodePtr(caseSensitiveAscii)
Optional ByVal memberSize As Long: Determines the max size of StringZ, WStringZ, and Types. For types use sizeof(typeName) where typeName is the name of a type you have defined.
Optional ByVal requestedCapacity As Long : Creates a bag initially large enough to hold .75 x requestedCapacity items. For example if you pass 100, the bag is guaranteed to hold at least 75 items without expanding. A tBag will automatically expand as needed, but it’s more efficient to pre-allocate space if you know how many items you will store.
Example
Dim bag As tBag
Bag_Init b, %tBagTypes.eString, CodePtr(caseSensitiveAscii), 0, %COUNT

[bookmark: _Toc414103667]Bag_Item
Subroutine: Returns a reference to an item from a tBag by index. If you attempt to retrieve an item that has been removed, the reference will be 0. Generally trying to do anything with an item that has a 0 reference will result in a GPF.
Parameters
ByRef obj As tBag: The tBag variable to retrieve an item from.
ByVal index As Long: The index of the item to retrieve.
ByRef item As Dword (output): A pointer to a variable of the bags item type that will be returned.
Example
Local bag As tBag
Local value As Byte
Local bp As Byte Ptr
Bag_Init bag, %tBagTypes.eByte
value = 1: Bag_Add bag, ByRef value
value = 2: Bag_Add bag, ByRef value
value = 3: Bag_Add bag, ByRef value
Bag_Item tBag, 1, bp ' Retrieve a reference to 2
If bp Then ? @bp ' After ensuring the item was not deleted, display the item

[bookmark: _Toc414103668]Bag_MaxEntry
Function: Returns the number of entries in use in the tBag. This may be higher than Bag_Count if you have removed items from the bag. This is the value you use to iterate over all items in the bag.
Returns
Long: Returns the number of items in use in the bag.
Parameters
ByRef obj As tBag : The tBag variable to retrieve the number of in use entries from.
Example
Local sp As String Ptr
For i = 0 To Bag_MaxEntry(bag)-1
 Bag_Item bag, i, ByRef sp
 If sp Then
 ' Valid string pointer
 End If
Next

[bookmark: _Toc414103669]Bag_Release
Subroutine: Release any internal memory allocated. The end result is a completely empty bag. It can optionally be expanded hold a certain number of items. This does not free the tBag itself, just memory internal to the tBag. This must be called when a tBag is no longer needed or before the tBag variable goes out of scope, such as at the end of a procedure. Failing to release a bag before it goes out of scope will result in memory leaks.
Parameters
ByRef obj As tBag : The tBag variable to clear.
Optional ByVal requestedCapacity As Long : Ensure the empty tBag will have at least requestedCapacity slots and be able to hold .75 x requestedCapacity items without expanding. A tBag will automatically expand as needed, but it’s more efficient to pre-allocate space if you know how many items you will be adding.
Example
Local a As tBag Ptr
Bag_Alloc a, %tBagTypes.eWString, CodePtr(caseInsensitiveAscii), 0, %COUNT
Bag_Release a

[bookmark: _Toc414103670]Bag_Remove
Function: Remove an item from a tBag by value.
Returns
Long: returns -1 (TRUE) if an item was removed. Returns 0 (FALSE) if an item was not removed.
Parameters
ByRef obj As tBag : A reference to the tBag to remove an item from.
ByVal value As Dword : A ByRef variable to find the item with a value to be removed.
Example
Local bag As tBag
Local value As CurrencyX
Bag_Init bag, %tBagTypes.eCurrencyX
value = 12.31@@: Bag_Add bag, ByRef value
value = 19.52@@: Bag_Add bag, ByRef value
value = 11.18@@: Bag_Add bag, ByRef value
value = 19.52@@: Bag_Remove bag, ByRef value: 'Remove the entry with 19.52 as a value

[bookmark: _Toc414103671]Bag_RemoveAt
Function: Remove an item from a tBag by index. Indexes are 0 based.
Returns
Long: Returns -1 (TRUE) if an item as removed. Returns 0 (FALSE) if an item was not removed.
Parameters
ByRef obj As tBag : A reference to the tBag to remove an item from.
ByVal index As Long : The index of the item to remove. It should be in the range of 0 to Bag_MaxEntries-1. You can only remove non-deleted entries.
Example
Local bag As tBag
Local value As CurrencyX
Bag_Init bag, %tBagTypes.eCurrencyX
value = 12.31@@: Bag_Add bag, ByRef value
value = 19.52@@: Bag_Add bag, ByRef value
value = 11.18@@: Bag_Add bag, ByRef value
Bag_RemoveAt bag, 1: 'Remove the second entry (19.52)

[bookmark: _Toc414103672]Internal Routines
[bookmark: _Toc414103673]BagGetNextCollectionSize
Function: Return a value that is greater than the number passed. For example BagGetNextCollectionSize(0) will return the next size a bag would be if it had to have at least one slot. A bag with x number of slots will hold at most .75 x values.
Returns
Long: The size the bag should be.
Parameters
ByVal tableCount As Long : The current size of the bag. This value will be incremented and then the next bag size found.

[bookmark: _Toc414103674]Bag_Expand
Subroutine: Expand a bag. Optionally you can request it to have at least requestedCapacity slots.
Parameters
ByRef obj As tBag : The tBag variable to expand.
Optional ByVal requestedCapacity As Long : The optional number of slots, minus one, that should be in the bag.

[bookmark: _Toc414103675]Bag_HashCode
Function: Calculates the hash code for a value.
Returns
Long: Returns the hash code computed for a value.
Parameters
ByRef obj As tBag : The tBag variable to compute a hash code for.
ByRef value As Dword : The ByRef variable to compute the hash code of its value.

[bookmark: _Toc414103676]Bag Iterator
A tBag can be iterated over easily by retrieving each item and skipping over any that have a hashcode_ of 0. The optional bageach.inc include file provides a few routines that make this easier.
[bookmark: _Toc414103677]BagEach_Reset
Subroutine: BagEach_Reset sets the tBag to iterate over and resets the record to -1, ready for the first call to BagEach_Next.
Parameters
ByRef iterator As tBagEach : The iterator to reset.
ByRef obj As tBag : The bag to iterate over.
Example
Local bag As tBag ' The bag we'll be filling
Local it As tBagEach ' The bag iterator
Bag_Init bag, %tBagTypes.eStringZ, _ ' Initialize the bag
 CodePtr(caseInsensitiveAscii), 6
BagEach_Reset it, bag ' Reset the iterator

[bookmark: _Toc414103678]BagEach_Next
Function: BagEach_Next moves the current pointer to the next item in the tBag if there is one.
Returns
Long : Return -1 (TRUE) if there was a next item or 0 (FALSE) if there was not a next item.
Parameters
ByRef iterator As tBagEach : The iterator to move to the next item.
ByRef iterator As tBagEach : The iterator to reset.
ByRef obj As tBag : The bag to iterate over.
Example
Local bag As tBag ' The bag we'll be filling
Local it As tBagEach ' The bag iterator
Bag_Init bag, %tBagTypes.eStringZ, _ ' Initialize the bag
 CodePtr(caseInsensitiveAscii), 6
BagEach_Reset it, bag ' Reset the iterator
While BagEach_Next(it) ' Iterate over each item that's left
Wend

[bookmark: _Toc414103679]BagEach_Index
Function: BagEach_Index returns the index (0-n) of the current item or -1 if there is no current item.
Returns
Long : Returns the index (0-n) of the current item or -1 if there is no item.
Parameters
ByRef iterator As tBagEach : The iterator to retrieve the index from.
Example
Local bag As tBag ' The bag we'll be filling
Local it As tBagEach ' The bag iterator
Local index As Long

Bag_Init bag, %tBagTypes.eStringZ, _ ' Initialize the bag
 CodePtr(caseInsensitiveAscii), 6

BagEach_Reset it, bag ' Reset the iterator

While BagEach_Next(it) ' Iterate over each item that's left
 index = BagEach_Index(it) ' Bag index (0 to n-1), Record # (1 to n)
Wend

[bookmark: _Toc414103680]BagEach_Item
Subroutine: BagEach_Item Returns a pointer to the current item if there is one or 0 if there is no current item.
Parameters
ByRef iterator As tBagEach : The iterator to retrieve the item from.
ByRef valueRef As Dword : The value to set the address to.
Example
Local bag As tBag ' The bag we'll be filling
Local it As tBagEach ' The bag iterator
Local index As Long
Local szp As StringZ Ptr

Bag_Init bag, %tBagTypes.eStringZ, _ ' Initialize the bag
 CodePtr(caseInsensitiveAscii), 6

BagEach_Reset it, bag ' Reset the iterator

While BagEach_Next(it) ' Iterate over each item that's left
 BagEach_Item(it, szp) 	 ' Get a pointer to the current item
 If szp Then ? @szp ' Display the value if it exists
Wend

[bookmark: _Toc414103681]Examples
The following examples are from the samples directory.
[bookmark: _Toc414103682]Associative Array
An associate array is an array you retrieve values from by key. i.e. instead of accessing item by index such as you would with an array, you access them by some key such as last name. Sometimes an associative array is called a map, because you map one value to another.
#Compiler PBCC 6, PBWin 10
#Compile Exe
#Dim All

#Include Once "bag.inc"

Global values() As String
Global bag As tBag

Function PBMain () As Long
 Bag_Init bag, %tBagTypes.eString, CodePtr(caseInsensitiveAscii)
 Map_Add "Smith", "A gunslinger in the old west."
 Map_Add "Jones", "The partner of Smith."
 Map_Add "Einstien", "A physicist of some reknown."
 ? Map_Item("Jones")
End Function

Sub Map_Add(key As String, value As String)
 Local index As Long
 index = Bag_Add(bag, ByRef key)
 If bag.maxEntries_ > UBound(values())+1 Then
 ReDim Preserve values(bag.maxEntries_-1)
 End If
 values(index) = value
End Sub

Function Map_Item(key As String) As String
 Local index As Long
 index = Bag_IndexOf(bag, ByRef key)
 If index>-1 Then Function = values(index)
End Function

[bookmark: _Toc414103683]Memory Handles
This sample allocates 32 bytes of memory using PowerBASIC’s GlobalMem Alloc and uses it to store a string value.
#Compiler PBWin 10, PBCC 6
#Compile Exe
#Dim All

#Include Once "..\bag.inc"

Function PBMain () As Long
 Local bag As tBag ' The bag we'll be filling
 Local values() As StringZ*32 ' The array of values to add to the bag
 ReDim values(9)

 Bag_Init bag, %tBagTypes.eDWord ' Initialize the bag to hold DWords (memory handles)

 Call BuildValues(values(), 0) ' Fill the array with 0-9
 GetMem bag, values() ' Add them to the bag

 Call BuildValues(values(), 100) ' Fill the array with 100-109
 GetMem bag, values() ' Add them to the bag

 Call BuildValues(values(), 1000) ' Fill the array with 1000-1009
 GetMem bag, values() ' Add them to the bag

 ShowMem bag ' Display the values

 FreeMem bag ' Free the memory in the bag
 Bag_Release bag ' Free the bag memory
End Function

Sub BuildValues(values() As StringZ*32, ByVal start As Long)
 Local i As Long
 For i=0 To 9
 values(i) = Format$(i+start) ' Stick a number in the array
 Next
End Sub

Sub GetMem(bag As tBag, values() As StringZ*32)
 Local vHndl As Dword
 Local i, u As Long
 Local sp As StringZ Ptr

 ' Allocate some memory
 For i=0 To 9
 GlobalMem Alloc 32 To vHndl ' Allocate memory
 GlobalMem Lock vHndl To sp ' Lock allocated memory returning a stringZ pointer
 @sp = values(i) ' Assign the StringZ variable from the array
 GlobalMem UnLock vHndl To u ' Unlock the memory
 Bag_Add bag, ByRef vHndl ' Add the hangle to the bag
 Next
End Sub

Sub FreeMem(bag As tBag)
 Local i As Long
 Local vHndl As Dword Ptr
 Local v As Dword

 For i=0 To Bag_MaxEntry(bag)-1 ' Loop through all the possible entries (even deleted)
 Bag_Item bag, i, vHndl ' Grab the item
 If vHndl Then ' If the item wasn't deleted
 Bag_RemoveAt bag, i ' Remove the item from the bag
 GlobalMem Free @vHndl To v ' Free the memory
 End If
 Next
End Sub

Sub ShowMem(bag As tBag)
 Local i, u As Long
 Local vHndl As Dword Ptr
 Local sp As StringZ Ptr
 Local s As String
 Local msg As IStringBuilderA

 msg = Class "StringBuilderA"

 For i=0 To Bag_MaxEntry(bag)-1 ' Loop through all the possible entries (even deleted)
 Bag_Item bag, i, vHndl ' Grab the item
 If vHndl Then ' If it was't deleted
 GlobalMem Lock @vHndl To sp ' Lock the memory
 s = @sp
 msg.Add s ' Add the string to our string builder
 msg.Add $CrLf ' Along with a CR/LF
 GlobalMem UnLock @vHndl To u ' Unlock the memory
 End If
 Next
 ? msg.String ' Show what's in the bag
End Sub

[bookmark: _Toc414103684]Dynamic Strings
This example demonstrates using a dynamically allocated tBag. Internally the bag stores handles to GlobalMem Alloc to allocated memory locations that are just large enough to hold a string passed to it.
#Compiler PBWin 10, PBCC 6
#Compile Exe
#Dim All

#Include Once "..\bag.inc"

Function PBMain () As Long
 Local bag As tBag Ptr ' The allocated bag we'll be filling

 Bag_Alloc bag, %tBagTypes.eDWord ' Initialize the allocated bag to hold DWords ("dynamic string" handles)

 AddValues @bag, 0 ' Fill the array with 0-9
 AddValues @bag, 100 ' Fill the array with 100-109
 AddValues @bag, 1000 ' Fill the array with 1000-1009

 ShowValues @bag ' Display the values

 RemoveAllValues @bag ' Remove all the values from the bag
 Bag_Free bag ' Free the allocated bag
End Function

'==
' "high-level" value functions
'==
Sub AddValues(bag As tBag, ByVal start As Long)
 Local i As Long
 For i=0 To 9
 Bag_Add bag, _ ' Create a "dynamic" StringZ
 MakeString(Format$(i+start))
 Next
End Sub

Sub RemoveAllValues(bag As tBag)
 Local i As Long
 Local vHndl As Dword Ptr
 For i=0 To Bag_MaxEntry(bag)-1 ' Loop through all the possible entries (even deleted)
 Bag_Item bag, i, vHndl ' Grab the item
 If vHndl Then ' If the item wasn't deleted
 FreeString @vHndl ' Free the string
 Bag_RemoveAt bag, i ' Remove the entry from the bag
 End If
 Next
End Sub

Sub ShowValues(bag As tBag)
 Local i As Long
 Local vHndl As Dword Ptr
 Local msg As IStringBuilderA

 msg = Class "StringBuilderA" ' Create the string builder

 For i=0 To Bag_MaxEntry(bag)-1 ' Loop through all the possible entries (even deleted)
 Bag_Item bag, i, vHndl ' Grab the item
 If vHndl Then ' If it wasn't deleted
 msg.Add GetString(@vHndl) ' Get the string and add it to the string builder
 msg.Add $CrLf ' Add a Cr/Lf
 End If
 Next
 ? msg.String ' Show what's in the bag
End Sub

'==
' "Low level" Dynamic String functions
'==
Function MakeString(value As String) As Dword
 Local vHndl, u As Dword
 Local sp As StringZ Ptr

 GlobalMem Alloc Len(value)+1 To vHndl ' Allocate memory
 GlobalMem Lock vHndl To sp ' Lock allocated memory returning a stringZ pointer
 @sp = value ' Assign the StringZ variable from the array
 GlobalMem UnLock vHndl To u ' Unlock the memory
 Function = vHndl ' Return memory pointer
End Function

Sub FreeString(ByVal vHndl As Dword)
 Local v As Dword
 If vHndl Then ' if it wasn't deleted
 GlobalMem Free vHndl To v ' Free the memory
 End If
End Sub

Function GetString(ByVal vHndl As Dword) As String
 Local u As Dword
 Local sp As StringZ Ptr
 Local v As String
 GlobalMem Lock vHndl To sp ' Lock allocated memory returning a stringZ pointer
 v = @sp ' Capture the string
 GlobalMem UnLock vHndl To u ' Unlock the memory
 Function = v ' Return the value
End Function

[bookmark: _Toc414103685]Record Access
This example builds a key “index” from a fixed length file of records using a tBag. It then retrieves records by key.
#Compiler PBWin 10, PBCC 6
#Compile Exe
#Dim All

#Include Once "..\bag.inc"

Type Customers
 Code As StringZ*6 ' Key to access the customer
 Name As StringZ*40 ' Customers name
End Type

Function PBMain () As Long
 Local bag As tBag
 Local hCust, recId As Long

 Bag_Init bag, %tBagTypes.eStringZ, _ ' Initialize the bag
 CodePtr(caseInsensitiveAscii), 6

 hCust = FreeFile ' Get a file handle
 Open "recs.dat" _ ' Open the file
 For Random _
 As #hCust _
 Len = SizeOf(Customers)

 BuildLookup hCust, bag ' Build the lookup

 ? GetRec(bag, hCust, "tomsp") ' Retrieve by key
 ? GetRec(bag, hCust, "Chops") ' Retrieve by key
 ? GetRec(bag, hCust, "LoNeP") ' Retrieve by key

 Bag_Release bag ' Release the memory allocated by the bag
End Function

Function GetRec(bag As tBag, ByVal fileNumber As Long, ByVal customerCode As String) As String
 Local rec As Customers
 Local recId As Long
 Local key As StringZ*6

 key = customerCode ' Make the key a StringZ
 recId = Bag_IndexOf(bag, ByRef key) + 1 ' Get the record id of the key (indexes are 0-n-1, records are 1 to n)
 If recId>0 Then ' If the record was found
 Get #fileNumber, recId, rec ' Get the record
 Function = rec.Code + ": " + rec.Name ' Return it's contents
 Else
 Function = "(not found)" ' Indicate record wasn't found
 End If
End Function

Sub BuildLookup(ByVal ff As Long, bag As tBag)
 Local rec As Customers
 Local i As Long

 For i=1 To Lof(#ff)\SizeOf(Customers) ' Loop through all records
 Get #ff, i, rec ' Get a record
 Bag_Add bag, ByRef rec.Code ' Add the code to the bag
 Next
End Sub
1

